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Signal Processing on Graphics Processors

• GPUs original role: turn 3-D polygons into 2-D pixels…
• …Which also makes them cheap & plentiful source of FLOPs

• Leverages volume & competition in entertainment industry 
• Primary role highly parallel, very regular
• Typically <$500 drop-in addition to standard  PC

• Outstripping CPU capacity, and growing more quickly
• Peak theoretical ~1TFlop
• Power draw: 280GTX = 200W Q6600 = 100W
• Still making improvements in market app with more 

parallelism, so growth continues

Presenter
Presentation Notes
Update with more current relevant info, less background more based on comments from Andrew.  Try to use common slide with HPEC Challenge
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GPU/CPU Performance Growth
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GPGPU (Old) Concept of Operations

“A=B+C”

• Arrays Textures
• Render polygon with the same pixel dimensions as output texture
• Execute with fragment program to perform desired calculation
• Move data from output buffer to desired texture

void main(float2 tc0 : TEXCOORD0,
out float4 col : COLOR,

uniform samplerRECT B,
uniform samplerRECT C)

{
col = texRECT (B, tc0) + 
texRECT (C, tc0);

} 

Now we have compute-centric programming models…
… But they require expertise to fully exploit
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VSIPL - Vector Signal Image Processing Library

• Portable API for linear algebra, image & signal processing
• Originally sponsored by DARPA in mid ’90s
• Targeted embedded processors – portability primary aim
• Open standard, Forum-based
• Initial API approved April 2000

• Functional coverage
• Vector, Matrix, Tensor
• Basic math operations, linear algebra, solvers, FFT, FIR/IIR, 

bookkeeping, etc
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VSIPL & GPU: Well Matched

• VSIPL is great for exploiting GPUs
• High level API with good coverage for dense linear algebra
• Allows non experts to benefit from hero programmers
• Explicit memory access controls
• API precision flexibility 

• GPUs are great for VSIPL
• Improves prototyping by speeding algorithm testing
• Cheap addition allows more engineers access to HPC
• Large speedups without needing explicit parallelism at application level
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GPU-VSIPL Implementation

• Full, compliant implementation of VSIPL Core-Lite Profile
• Fully encapsulated CUDA backend

• Leverages CUFFT library
• All VSIPL functions accelerated

• Core Lite Profile:
• Single precision floating point, some basic integer
• Vector & Sxalar, complex & real support
• Basic elementwise, FFT, FIR, histogram, RNG, support
• Full list: http://www.vsipl.org/coreliteprofile.pdf

• Also, some matrix support, including vsip_fftm_f

http://www.vsipl.org/coreliteprofile.pdf
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CUDA Programming & Optimization

CUDA Optimization Considerations

• Maximize occupancy to hide 
memory latency

• Keep lots of threads in flight
• Carefully manage memory access to 

allow coalesce & avoid conflicts
• Avoid slow operations (e.g integer 

multiply for indexing)
• Minimize synch barriers
• Careful loop unrolling
• Hoist loop invariants
• Reduce register use for greater 

occupancy

• “GPU Performance Assessment with 
the HPEC Challenge” – Thursday PM
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GPU VSIPL Speedup: Unary
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GPU VSIPL Speedup: Binary
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GPU VSIPL Speedup: FFT
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GPU VSIPL Speedup: FIR
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Application Example: Range Doppler Map

• Simple Range/Doppler data visualization application demo
• Intro app for new VSIPL programmer
• 59x Speedup TASP GPU-VSIPL
• No changes to source code

Section
9800GX2        

 

Time (ms)
Q6600         

 

Time (ms) Speedup
Admit 8.88 0 0
Baseband 67.77 1872.3 28
Zeropad 23.18 110.71 5
Fast time FFT 47.25 5696.3 121
Multiply 8.11 33.92 4
Fast Time FFT‐1 48.59 5729.04 118
Slow time FFT, 2x CT 12.89 3387 263
log10 |.|2 22.2 470.15 21
Release 54.65 0 0

Total: 293.52 17299.42 59
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GPU-VSIPL: Future Plans

• Expand matrix support
• Move toward full Core Profile
• More linear algebra/solvers
• VSIPL++
• Double precision support
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Conclusions

• GPUs are fast, cheap signal processors
• VSIPL is a portable, intuitive means to exploit GPUs
• GPU-VSIPL allows easy access to GPU performance without 

becoming an expert CUDA/GPU programer
• 10-100x speed improvement possible with no code change

• Not yet released, but unsupported previews may show up at: 
http://gpu-vsipl.gtri.gatech.edu

http://gpu-vsipl.gtri.gatech.edu/
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