
GTRI_B-1
1

GPU VSIPL: High Performance
VSIPL Implementation for GPUs

Andrew Kerr, Dan Campbell*,
Mark Richards, Mike Davis

andrew.kerr@gtri.gatech.edu, dan.campbell@gtri.gatech.edu,
mark.richards@ece.gatech.edu, mike.davis@gtri.gatech.edu

High Performance Embedded Computing (HPEC)
Workshop

24 September 2008

Distribution Statement (A): Approved for
public release; distribution is unlimited

This work was supported in part by DARPA and AFRL
under contracts FA8750-06-1-0012 and FA8650-07-C-

7724. The opinions expressed are those of the authors.

mailto:andrew.kerr@gtri.gatech.edu
mailto:dan.campbell@gtri.gatech.edu
mailto:mark.richards@ece.gatech.edu
mailto:mike.davis@gtri.gatech.edu

GTRI_B-2
2

Signal Processing on Graphics Processors

• GPUs original role: turn 3-D polygons into 2-D pixels…
• …Which also makes them cheap & plentiful source of FLOPs

• Leverages volume & competition in entertainment industry
• Primary role highly parallel, very regular
• Typically <$500 drop-in addition to standard PC

• Outstripping CPU capacity, and growing more quickly
• Peak theoretical ~1TFlop
• Power draw: 280GTX = 200W Q6600 = 100W
• Still making improvements in market app with more

parallelism, so growth continues

Presenter
Presentation Notes
Update with more current relevant info, less background more based on comments from Andrew. Try to use common slide with HPEC Challenge

GTRI_B-3
3

GPU/CPU Performance Growth

GTRI_B-4
4

GPGPU (Old) Concept of Operations

“A=B+C”

• Arrays Textures
• Render polygon with the same pixel dimensions as output texture
• Execute with fragment program to perform desired calculation
• Move data from output buffer to desired texture

void main(float2 tc0 : TEXCOORD0,
out float4 col : COLOR,

uniform samplerRECT B,
uniform samplerRECT C)

{
col = texRECT (B, tc0) +
texRECT (C, tc0);

}

Now we have compute-centric programming models…
… But they require expertise to fully exploit

GTRI_B-5
5

VSIPL - Vector Signal Image Processing Library

• Portable API for linear algebra, image & signal processing
• Originally sponsored by DARPA in mid ’90s
• Targeted embedded processors – portability primary aim
• Open standard, Forum-based
• Initial API approved April 2000

• Functional coverage
• Vector, Matrix, Tensor
• Basic math operations, linear algebra, solvers, FFT, FIR/IIR,

bookkeeping, etc

GTRI_B-6
6

VSIPL & GPU: Well Matched

• VSIPL is great for exploiting GPUs
• High level API with good coverage for dense linear algebra
• Allows non experts to benefit from hero programmers
• Explicit memory access controls
• API precision flexibility

• GPUs are great for VSIPL
• Improves prototyping by speeding algorithm testing
• Cheap addition allows more engineers access to HPC
• Large speedups without needing explicit parallelism at application level

GTRI_B-7
7

GPU-VSIPL Implementation

• Full, compliant implementation of VSIPL Core-Lite Profile
• Fully encapsulated CUDA backend

• Leverages CUFFT library
• All VSIPL functions accelerated

• Core Lite Profile:
• Single precision floating point, some basic integer
• Vector & Sxalar, complex & real support
• Basic elementwise, FFT, FIR, histogram, RNG, support
• Full list: http://www.vsipl.org/coreliteprofile.pdf

• Also, some matrix support, including vsip_fftm_f

http://www.vsipl.org/coreliteprofile.pdf

GTRI_B-8
8

CUDA Programming & Optimization

CUDA Optimization Considerations

• Maximize occupancy to hide
memory latency

• Keep lots of threads in flight
• Carefully manage memory access to

allow coalesce & avoid conflicts
• Avoid slow operations (e.g integer

multiply for indexing)
• Minimize synch barriers
• Careful loop unrolling
• Hoist loop invariants
• Reduce register use for greater

occupancy

• “GPU Performance Assessment with
the HPEC Challenge” – Thursday PM

Grid

Block
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath

Shared
Memory

Register
File

Device Memory

Block
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath

Shared
Memory

Register
File

Block

Thread
Shared
Memory

Register
File

Host MemoryCPU
Dispatch

Thread
Thread

Thread

CUDA Programming Model

GTRI_B-9
9

GPU VSIPL Speedup: Unary

320X

20X

nVidia 8800GTX
Vs

Intel Q6600

GTRI_B-10
10

GPU VSIPL Speedup: Binary

25X

40XnVidia 8800GTX
Vs

Intel Q6600

GTRI_B-11
11

GPU VSIPL Speedup: FFT
83X

39X

nVidia 8800GTX
Vs

Intel Q6600

GTRI_B-12
12

GPU VSIPL Speedup: FIR

157X

nVidia 8800GTX
Vs

Intel Q6600

GTRI_B-13
13

Application Example: Range Doppler Map

• Simple Range/Doppler data visualization application demo
• Intro app for new VSIPL programmer
• 59x Speedup TASP GPU-VSIPL
• No changes to source code

Section
9800GX2

Time (ms)
Q6600

Time (ms) Speedup
Admit 8.88 0 0
Baseband 67.77 1872.3 28
Zeropad 23.18 110.71 5
Fast time FFT 47.25 5696.3 121
Multiply 8.11 33.92 4
Fast Time FFT‐1 48.59 5729.04 118
Slow time FFT, 2x CT 12.89 3387 263
log10 |.|2 22.2 470.15 21
Release 54.65 0 0

Total: 293.52 17299.42 59

GTRI_B-14
14

GPU-VSIPL: Future Plans

• Expand matrix support
• Move toward full Core Profile
• More linear algebra/solvers
• VSIPL++
• Double precision support

GTRI_B-15
15

Conclusions

• GPUs are fast, cheap signal processors
• VSIPL is a portable, intuitive means to exploit GPUs
• GPU-VSIPL allows easy access to GPU performance without

becoming an expert CUDA/GPU programer
• 10-100x speed improvement possible with no code change

• Not yet released, but unsupported previews may show up at:
http://gpu-vsipl.gtri.gatech.edu

http://gpu-vsipl.gtri.gatech.edu/

	GPU VSIPL: High Performance VSIPL Implementation for GPUs
	Signal Processing on Graphics Processors
	GPU/CPU Performance Growth
	GPGPU (Old) Concept of Operations
	VSIPL - Vector Signal Image Processing Library
	VSIPL & GPU: Well Matched
	GPU-VSIPL Implementation
	CUDA Programming & Optimization
	GPU VSIPL Speedup: Unary
	GPU VSIPL Speedup: Binary
	GPU VSIPL Speedup: FFT
	GPU VSIPL Speedup: FIR
	Application Example: Range Doppler Map
	GPU-VSIPL: Future Plans
	Conclusions

