Table of Contents: Fundamentals of Radar Signal Processing

Table of Contents: Fundamentals of Radar Signal Processing

Table of Contents

 

CHAPTER 1 INTRODUCTION TO RADARSYSTEMS

1.1    HISTORYAND APPLICATIONS OF RADAR

1.2    BASICRADAR FUNCTIONS

1.3    ELEMENTSOF A PULSED RADAR

1.3.1    Transmitter and Waveform Generator

1.3.2    Antennas

1.3.3    Receivers

1.4    REVIEW OFSELECTED SIGNAL PROCESSING CONCEPTS AND OPERATIONS

1.4.1    Resolution

1.4.2    Spatial Frequency

1.4.3    Fourier Transforms

1.4.4    The Sampling Theorem and SpectrumReplication

1.4.5    Vector Representation of Signals

1.4.6    Data Integration

1.4.7    Correlation

1.5    A PREVIEWOF BASIC RADAR SIGNAL PROCESSING

1.5.1    Radar Time Scales

1.5.2    Phenomenology

1.5.3    Signal Conditioning and InterferenceSuppression

1.5.4    Imaging

1.5.5    Detection

1.5.6    Postprocessing

1.6    RADARLITERATURE

1.6.1    Radar Systems and Components

1.6.2    Radar Signal Processing

1.6.3    Advanced Radar Signal Processing

1.6.4    Current Radar Research

1.7    REFERENCES

 

CHAPTER 2 SIGNAL MODELS

2.1    COMPONENTSOF A RADAR SIGNAL

2.2    AMPLITUDEMODELS

2.2.1    Simple Point Target Radar RangeEquation

2.2.2    Distributed Target Forms of the RangeEquation

2.2.3    Radar Cross Section

2.2.4    Radar Cross Section for Meteorological Targets

2.2.5    Statistical Description of Radar CrossSection

2.2.6    Swerling Models

2.3    CLUTTER

2.3.1    Behavior of ?0

2.3.2    Signal-to-Clutter Ratio

2.3.3    Temporal and Spatial Correlation of Clutter

2.3.4    Compound Models of Radar Cross Section

2.4    NOISE MODELAND SIGNAL-TO-NOISE RATIO

2.5    JAMMING

2.6    FREQUENCYMODELS: THE DOPPLER SHIFT

2.6.1    Doppler Shift

2.6.2    Simplified Approach to Doppler Shift

2.6.3    The Stop-and-Hop Assumption and SpatialDoppler

2.7    SPATIALMODELS

2.7.1    Variation with Angle or Cross-Range

2.7.2    Variation with Range

2.7.3    Projections

2.7.4    Multipath

2.8    SPECTRALMODEL

2.9    SUMMARY

2.10  REFERENCES

 

CHAPTER 3 SAMPLING ANDQUANTIZATION OF PULSED RADAR SIGNALS

3.1    DOMAINSAND CRITERIA FOR SAMPLING RADAR SIGNALS

3.1.1    Time and Frequency Samples

3.1.2    Spatial Samples

3.1.3    Sampling Criteria

3.2    SAMPLINGIN THE FAST TIME DIMENSION

3.3    SAMPLINGIN SLOW TIME: SELECTING THE PULSE REPETITION INTERVAL

3.4    SAMPLINGTHE DOPPLER SPECTRUM

3.4.1    The Nyquist Rate in Doppler

3.4.2    Straddle Loss

3.5    SAMPLINGIN THE SPATIAL AND ANGLE DIMENSIONS

3.5.1    Phased Array Element Spacing

3.5.2    Antenna Beam Spacing

3.6    QUANTIZATION

3.6.1    Quantization Noise

3.7    I/QIMBALANCE AND DIGITAL I/Q

3.7.1    I/Q Imbalance and Offset

3.7.2    Correcting I/Q Errors

3.7.3    Digital I/Q

3.8    REFERENCES

 

CHAPTER 4 RADAR WAVEFORMS

4.1    INTRODUCTION

4.2    THEWAVEFORM MATCHED FILTER

4.2.1    The Matched Filter

4.2.2    Matched filter for the Simple Pulse

4.2.3    All-Range Matched Filtering

4.2.4    Range Resolution of the Matched Filter

4.3    MATCHEDFILTERING OF MOVING TARGETS

4.4    THEAMBIGUITY FUNCTION

4.4.1    Definition and Properties of the AmbiguityFunction

4.4.2    Ambiguity Function of the Simple Pulse

4.5    THE PULSEBURST WAVEFORM

4.5.1    Matched Filter for the Pulse Burst Waveform

4.5.2    Pulse-by-Pulse Processing

4.5.3    Range Ambiguity

4.5.4    Doppler Response of the Pulse Burst Waveform

4.5.5    Ambiguity Function for the Pulse BurstWaveform

4.5.6    Relation of Slow-Time Spectrum to AmbiguityFunction

4.6    FREQUENCY-MODULATEDPULSE COMPRESSION WAVEFORMS

4.6.1    Linear Frequency Modulation

4.6.2    The Principle of Stationary Phase

4.6.3    Ambiguity Function of the LFM Waveform

4.6.4    Range-Doppler Coupling

4.6.5    Stretch Processing

4.7    RANGESIDELOBE CONTROL FOR FM WAVEFORMS

4.7.1    Matched Filter Frequency Response Shaping

4.7.2    Waveform Spectrum Shaping

4.8    THESTEPPED FREQUENCY WAVEFORM

4.9    PHASE-MODULATEDPULSE COMPRESSION WAVEFORMS

4.9.1    Biphase Codes

4.9.2    Polyphase Codes

4.10  COSTASFREQUENCY CODES

4.11  REFERENCES

 

CHAPTER 5 DOPPLER PROCESSING

5.1    ALTERNATEFORMS OF THE DOPPLER SPECTRUM

5.2    MOVINGTARGET INDICATION (MTI)

5.2.1    Pulse Cancellers

5.2.2    Vector Formulation of the Matched Filter

5.2.3    Matched Filters for Clutter Suppression

5.2.4    Blind Speeds and Staggered PRFs

5.2.5    MTI Figures of Merit

5.2.6    Limitations to MTI Performance

5.3    PULSEDOPPLER PROCESSING

5.3.1    The Discrete Time Fourier Transform of aMoving Target

5.3.2    Sampling the DTFT: The Discrete FourierTransform

5.3.3    Matched Filter and FilterbankInterpretations of Pulse Doppler Processing with the DFT

5.3.4    Fine Doppler Estimation

5.3.5    Modern Spectral Estimation in Pulse DopplerProcessing

5.4    DWELL-TO-DWELLSTAGGER

5.5    PULSE PAIRPROCESSING

5.6    ADDITIONALDOPPLER PROCESSING ISSUES

5.6.1    Combined MTI and Pulse Doppler Processing

5.6.2    Transient Effects

5.6.3    PRF Regimes and Ambiguity Resolution

5.7    CLUTTERMAPPING AND THE MOVING TARGET DETECTOR

5.7.1    Clutter Mapping

5.7.2    The Moving Target Detector

5.8    MTI FORMOVING PLATFORMS: ADAPTIVE DISPLACED PHASE CENTER ANTENNA PROCESSING

5.8.1    The DPCA Concept

5.8.2    Adaptive DPCA

5.9    REFERENCES

 

CHAPTER 6 DETECTION FUNDAMENTALS

6.1    RADARDETECTION AS HYPOTHESIS TESTING

6.1.1    The Neyman-Pearson Detection Rule

6.1.2    The Likelihood Ratio Test

6.2    THRESHOLDDETECTION IN COHERENT SYSTEMS

6.2.1    The Gaussian Case for Coherent Receivers

6.2.2    Unknown Parameters and Threshold Detection

6.2.3    Linear and Square-Law Detectors

6.2.4    Other Unknown Parameters

6.3    THRESHOLDDETECTION OF RADAR SIGNALS

6.3.1    Coherent, Noncoherent, and BinaryIntegration

6.3.2    Nonfluctuating Targets

6.3.3    Albersheims Equation

6.3.4    Fluctuating Targets

6.3.5    Shnidmans Equation

6.3.6    Binary Integration

6.4    REFERENCES

6.5    APPENDIX:USEFUL NUMERICAL APPROXIMATIONS

6.5.1    Approximations to the Error Function

6.5.2    Approximations to the Magnitude Function

 

CHAPTER 7 CONSTANT FALSE ALARMRATE (CFAR) DETECTION

7.1    THE EFFECTOF UNKNOWN INTERFERENCE POWER ON FALSE ALARM PROBABILITY

7.2    CELLAVERAGING CFAR

7.2.1    The Effect of Varying PFA

7.2.2    The Cell Averaging CFAR Concept

7.2.3    CFAR Reference Windows

7.3    ANALYSISOF CELL-AVERAGING CFAR

7.3.1    Derivation of CA CFAR Threshold

7.3.2    Cell Averaging CFAR Performance

7.3.3    CFAR Loss

7.4    CA CFARLIMITATIONS

7.4.1    Target Masking

7.4.2    Clutter Edges

7.5    EXTENSIONSTO CELL-AVERAGING CFAR

7.6    ORDER STATISTICCFAR

7.7    ADDITIONALCFAR TOPICS

7.7.1    Adaptive CFAR

7.7.2    Two-Parameter CFAR

7.7.3    Clutter Map CFAR

7.7.4    Distribution-Free CFAR

7.7.5    System-Level Control of False Alarms

7.8    REFERENCES

 

CHAPTER 8 INTRODUCTION TOSYNTHETIC APERTURE IMAGING

8.1    INTRODUCTIONTO SAR FUNDAMENTALS

8.1.1    Cross-Range Resolution in Radar

8.1.2    The Synthetic Aperture Viewpoint

8.1.3    Doppler Viewpoint

8.1.4    SAR Coverage and Sampling

8.2    STRIPMAPSAR DATA CHARACTERISTICS

8.2.1    Stripmap SAR Geometry

8.2.2    Stripmap SAR Data Set

8.3    STRIPMAPSAR IMAGE FORMATION ALGORITHMS

8.3.1    Doppler Beam Sharpening

8.3.2    Quadratic Phase Error Effects

8.3.3    Range-Doppler Algorithms

8.3.4    Depth of Focus

8.4    SPOTLIGHTSAR DATA CHARACTERISTICS

8.5    THE POLARFORMAT IMAGE FORMATION ALGORITHM FOR SPOTLIGHT SAR

8.6    INTERFEROMETRICSAR

8.6.1    The Effect of Height on a SAR Image

8.6.2    IFSAR Processing Steps

8.7    OTHERCONSIDERATIONS

8.7.1    Motion Compensation and Autofocus

8.7.2    Autofocus

8.7.3    Speckle Reduction

8.8    REFERENCES

 

CHAPTER 9 INTRODUCTION TO BEAMFORMINGAND SPACE-TIME ADAPTIVE PROCESSING

9.1    SPATIALFILTERING

9.1.1    Conventional Beamforming

9.1.2    Adaptive Beamforming

9.1.3    Adaptive Beamforming with Preprocessing

9.2    SPACE-TIMESIGNAL ENVIRONMENT

9.3    SPACE-TIMESIGNAL MODELING

9.4    PROCESSINGTHE SPACE-TIME SIGNAL

9.4.1    Optimum Matched Filtering

9.4.2    STAP Metrics

9.4.3    Relation to Displaced Phase Center AntennaProcessing

9.4.4    Adaptive Matched Filtering

9.5    COMPUTATIONALISSUES IN STAP

9.5.1    Power Domain Solution

9.5.2    Computational Load of the Power DomainSolution

9.5.3    Voltage Domain Solution and ComputationalLoad

9.5.4    Conversion to Computational Rates

9.6    REDUCED-DIMENSIONSTAP

9.7    ADVANCEDSTAP ALGORITHMS AND ANALYSIS

9.8    LIMITATIONSTO STAP

9.9    REFERENCES